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  Introduction 
  Trivalent phosphorus compounds are widely used for the reduction of sulfur- and selenium-containing species in 
biological systems. A representative example is tris(2-carboxyethyl)phosphine (TCEP), which is often preferred 
over alternative reducing agents, such as dithiothreitol (DTT), due to its strong redox potential, broad pH stability, 

and ability to minimize unwanted side reactions or 
competitive interactions with other thiol- or selenol-
containing compounds [1-4]. It has also been reported 
that trivalent phosphorus compounds can reduce
reactive intermediates formed by the oxidative
modi�ication of thiols, such as sulfenic acids (R-SOH)
[5-12, 13-15]. For instance, the reduction of cysteine 
sulfenic acid (Cys-SOH) to cysteine thiol (Cys-SH) by 
TCEP has been considered experimental evidence 
supporting the presence of Cys-SOH (Scheme 1) [16]. 
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Abstract
     Trivalent phosphorus compounds are widely used for the reduction of biologically relevant sulfur- and 
selenium-containing species due to its strong redox potential, broad pH stability, and ability to minimize 
unwanted side reactions or competitive interactions with other thiol- or selenol-containing compounds. 
Selenocysteine selenenyl iodides (Sec–SeIs) have attracted increasing attention as key intermediates 
in the enzymatic functions of iodothyronine deiodinases. Investigating whether Sec–SeIs can serve as 
substrates for reduction by trivalent phosphorus compounds could provide valuable insights into the 
existence and behavior of Sec–SeI in proteins. However, to date, there have been no studies examining 
the reactivity between trivalent phosphorus compounds and selenenyl iodides. In this study, phosphine-
mediated reduction of a selenocysteine selenenyl iodide to a selenocysteine selenol was developed using 
isolable model compounds stabilized by nanosized molecular cradle. The present study demonstrates 
that phosphines serve as excellent non-thiol reducing agents for selenenyl iodides, particularly in terms 
of their high reduction ef�iciency and lack of interfering thiol or selenol groups. 
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 Selenocysteine selenenyl iodides (Sec–SeI) have attracted increasing attention as key intermediates in the 
enzymatic functions of iodothyronine deiodinases (Dios). These enzymes regulate the concentration of active 
thyroid hormones through the deiodination of iodothyronines, a process mediated by selenocysteine selenols 
(Sec–SeH) at the catalytic site, which is believed to involve the formation of Sec–SeI intermediates (Scheme 2) 
[17-31]. Investigating whether Sec–SeIs can serve as substrates for reduction by trivalent phosphorus compounds 
could provide valuable insights into the existence and behavior of Sec–SeI in proteins. However, to date, there have 
been no studies examining the reactivity between trivalent phosphorus compounds and selenenyl iodides, including 
non-selenocysteinyl derivatives [32-34]. This is largely due to the inherent instability of selenenyl iodides, which 
readily undergo disproportionation to diselenides and elemental iodine (Scheme 3) [35, 36]. 

 As a protective group to stabilize the biologically relevant reactive intermediates, we have developed a nanosized 
molecular cradle that can accommodate a reactive amino acid residue [37-42]. By using the molecular cradle as an 
N -terminal protecting group (henceforth denoted as “Bpsc”), we recently succeeded in the synthesis and isolation 
of selenocysteine-derived selenenyl iodide  1  (Figure 1) [38-43]. Here, we report the reduction of the stably isolated 
Sec–SeI to the corresponding Sec–SeH by phosphines, providing direct experimental evidence of this reaction.

  Materials and methods 
   General 
  All synthetic experiments were performed under argon atmosphere. Selenocysteine selenenyl iodide  1  was prepared 
according to the reported procedure [42]. Anhydrous THF was purchased from Kanto Chemical and passed through 
a Kayama Oxygen solvent puri�ication system prior to use. Other chemicals were purchased from commercial 
sources and used as received.  1 H NMR spectra were recorded on a JEOL ECS-400, and the chemical shifts of  1 H 
are referenced to the residual proton signal of CDCl 3  (δ 7.26).  31 P NMR spectra were recorded on JEOL ECX-500 
using CDCl 3  as a solvent, and the chemical shifts of  31 P were referenced to PPh 3  (δ −5.65) as an external standard.

Figure 1.   Isolable Sec–SeI ( 1 ) and Sec–SeH ( 2 ) stabilized 
by a molecular cradle.

Scheme 1.  Reduction of a transiently generated sulfenic 
acid by TCEP.

Scheme 2.  Proposed catalytic mechanism of iodothyronine 
deiodinases.

Scheme 3.  Disproportionation of selenenyl iodides.
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  Reductive transformation from selenocysteine selenenyl iodide 1 to selenocysteine selenol 2 promoted by 
Ph 3 P. 
  To the mixture of THF (0.8 mL) and H 2 O (0.2 mL) in Schlenk �lask, solution of Ph 3 P in THF (0.111 M, 50.0 μL, 5.58 
μmol, 1.20 eq) and solution of selenenyl iodide  1  in THF (0.0186 M, 250 μL, 4.65 μmol) were added. The resulting 
mixture was stirred for 10 seconds at room temperature. To the Schlenk �lask, H 2 O (2.0 mL) was added, and the 
aqueous layer was extracted with Et 2 O. Combined organic layers were concentrated to give crude white solids. The 
crude mixture was washed with MeCN and dried. By  1 H NMR spectroscopy, the content of selenocysteine selenol  2 , 
the corresponding diselenide  3  and the corresponding dehydroalanine  4  was estimated to be 72%, 15% and 3%, 
respectively. The �iltrate was concentrated to yield white solids, in whose  31 P NMR spectrum triphenylphosphine 
oxide was the only detectable Ph 3 P-derived product, along with the remaining Ph 3 P.

  Reductive transformation from selenocysteine selenenyl iodide 1 to selenocysteine selenol 2 promoted by 
nBu 3 P. 
  To the mixture of THF (0.8 mL) and H 2 O (0.2 mL) in Schlenk �lask, solution of  n Bu 3 P in THF (0.100 M, 55.0 μL, 5.50 
μmol, 1.19 eq) and solution of selenenyl iodide  1  in THF (0.0186 M, 250 μL, 4.64 μmol) were added. The resulting 
mixture was stirred for 10 seconds at room temperature. To the Schlenk �lask, H 2 O (2.0 mL) was added, and the 
aqueous layer was extracted with Et 2 O. Combined organic layers were concentrated to give crude white solids. The 
crude mixture was washed with MeCN and dried. By  1 H NMR spectroscopy, the content of selenocysteine selenol 
 2 , the corresponding diselenide  3  and the corresponding dehydroalanine  4  was estimated to be 67%, 31% and 
2%, respectively.

  Results and discussion 
  While there have been several reports on the reductions of sulfenic acids by trivalent phosphorus compounds, these 
reactions have been limited to transiently generated R–SOHs [13-15], as sulfenic acids are inherently unstable due 
to their tendency to undergo self-condensation. In contrast, we have synthesized a stable sulfenic acid  5  bearing 
a cavity-shaped steric protecting group (a Bmt group) and demonstrated its reduction to the corresponding thiol 
 6  by triphenylphosphine in a mixed solvent of THF and H 2 O (Scheme 4) [44]. We have also demonstrated the 
phosphine-mediated reduction of a selenenic acid (R–SeOH) through the reaction of selenenic acid  7  stabilized 
by a Bmt group with triphenylphosphine, yielding selenol  8 .

 Based on these �indings, Sec–SeI  1  was treated with 1.2 equivalents of triphenylphosphine in a mixed solvent 
of THF and H 2 O at room temperature (Scheme 5). Within 10 seconds, purple color of the Sec–SeI  1  disappeared, 
and compound  1  was completely consumed.  1 H NMR spectroscopic analysis revealed that Sec–SeH  2  was obtained 
as the major product in 72% yield, indicating that triphenylphosphine reduces selenenyl iodides very ef�iciently. 
In addition to the target Sec–SeH  2 , the corresponding diselenide  3  and dehydroalanine  4  were produced in 15% 
and 3% yields, respectively. The formation of diselenide  3  may be attributed to the reaction between the starting 
material, Sec–SeI  1 , and the generated product, Sec–SeH  2 . The small amount of dehydroalanine  4  is likely derived 
from thermal deselenation of Sec–SeOH [38], which is produced by hydrolysis of Sec–SeI  1  in a water-containing 
solvent [42]. However, because the hydrolysis is very sluggish under neutral conditions, the amounts of the resulting 
Sec–SeOH and its deselenation product  4  are considered to be very low.  31 P NMR spectroscopic analysis revealed that 
triphenylphosphine oxide, which is considered to be formed by the hydrolysis of an initially generated phosphonium 
salt, was the only detectable triphenylphosphine-derived product, along with the remaining triphenylphosphine.

Scheme 4.  Phosphine-promoted reduction 
of a sulfenic acid and a selenenic 
acid stabilized by a cavity-
shaped steric protection group.
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 In addition to the triarylphosphine, we also investigated trialkylphosphine as a reductant for selenenyl iodides. 
When Sec–SeI  1  was treated with tributylphosphine under the same conditions, Sec–SeH  2  was obtained as the 
major product in 67% yield, along with diselenide  3  and dehydroalanine  4  (Scheme 6). These results demonstrate 
that trialkylphosphine is also a good reducing agent for selenenyl iodides, and strongly suggests that phosphine 
reagents such as TCEP will be useful for the ef�icient reduction of Sec–SeIs generated in proteins.

 In conclusion, we have demonstrated for the �irst time the phosphine-mediated reduction of selenocysteine 
selenenyl iodide to selenocysteine selenol. In the catalytic cycle of Dios, selenenyl iodide intermediates are postulated 
to be reduced to their parent selenols by thiol cofactors. We previously reported thiol-mediated reductions of 
selenenyl iodides bearing both selenocysteinyl and nonselenocysteinyl backbones [38-43, 45, 46]. The present 
study clearly shows that phosphines serve as excellent non-thiol reducing agents for selenenyl iodides, particularly 
in terms of their high reduction ef�iciency and lack of interfering thiol or selenol groups. 

Scheme 5.  Ph 3 P-promoted 
reductive 
transformation of Sec–
SeI  1  to Sec–SeH 2.

Scheme 6.  ⁿBu 3 P-promoted 
reductive 
transformation of Sec–
SeI  1  to Sec–SeH  2 .
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