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Introduction
Iron is an essential mineral for redox reactions, electron 

transfer reactions, and enzymatic activity in living systems [1]. 
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Abstract
Iron is an essential element for all living organisms. The ability of plants to absorb inorganic iron from soil is important 
not only for plants but also for mammals, which ultimately rely on plants as their nutrient source. In contrast to most 
plant species, Poaceae plants, including rice, have developed a distinct chelation strategy to effi  ciently acquire insoluble 
soil iron using iron-chelating substances such as mugineic acid (MAs), called phytosiderophores. Genes involved in the 
biosynthesis and transport of MAs and their resulting iron(III)-MA complexes across membranes have been identifi ed. 
On the other hand, an effi  cient short-step synthesis of the substrates MA and 2′-deoxymugineic acid (DMA) has enabled 
a suffi  cient supply of these compounds. Furthermore, owing to the chemical synthesis of proline-2′-deoxymugineic acid 
(PDMA), a cost-eff ective analog of DMA, the eff ectiveness of phytosiderophores in promoting rice growth in alkaline 
soil has been demonstrated at an experimental fi eld scale. Nicotianamine (NA), an MAs precursor essential for metal 
translocation within plant tissues, was recently shown to be absorbed as an iron(II) complex in the mouse small intestine 
by an amino acid transporter. The discovery of the biological role of NA in iron absorption by the small intestine not 
only highlights the biological signifi cance of NA across the plant and animal kingdoms but also opens new possibilities 
for biofortifi cation approaches. Here, we discuss the recent fi ndings in MA research in terms of plant growth, application 
in agriculture, and the emerging nutraceutical value of NA in iron absorption in mammals.
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Considering the food chain, living organisms ultimately obtain the nutrient iron from plants [2, 3]. Therefore, the ability of plants 
to absorb iron through their roots is of great importance to the entire living world. The proportion of iron present in the Earth’s 
crust is approximately 5%, making it the fourth most abundant element after oxygen, silicon, and aluminum [4]; however, it is 
usually present in an oxidized, trivalent, water-insoluble form, which is not available for plants. Calculations show that for every 
unit increase in soil pH, the solubility of iron decreases by 1/1000 [5]. Therefore, approximately 30% of the worldʼs neutral to 
alkaline soils are iron-defi cient for plants, making them unsuitable for farming [6]. Plants have developed two major strategies for 
effi  cient iron absorption: reduction and chelation (Figure 1) [7]. Plants generally reduce iron(III) (ferric iron) to iron(II) (ferrous 
iron) by the enzyme ferric-chelate reductase (FRO) [8] and taking up iron(II) through the iron-regulated transporter1 (IRT1) 
present in the root epidermis [9]. By contrast, Poaceae plants synthesize and secrete phytosiderophores such as mugineic acids 
(MAs) through TOM1 transporter [10] in response to iron-defi ciency [7]. The secreted MAs form water-soluble complexes with 
iron(III), which are then absorbed through the yellow stripe1/yellow stripe1-like (YS1/YSL) transmembrane transporter [11]. 

The structure of MA was fi rst determined in 1978 by the Japanese group [12-14]. Takagi found that barley roots secreted 
iron-solubilizing substance from the roots in response to iron-defi ciency [12]. Subsequently, Takemoto, Nomoto, and Takagi 
determined the structures of the substances and gave the name mugineic acids, which mean a kind of amino acid secreted from 
barley roots in Japanese [12, 13]. The biosynthetic pathway of MAs has been elucidated, in which L-methionine (Met) serves as 
a precursor for all known MAs [14-16], while Met is produced through the methionine cycle [15, 17]. All MAs share the same 
pathway from L-Met to 2′-deoxymugineic acid (DMA) via nicotianamine (NA), but the subsequent steps diff er among plant 
species and cultivars. Most genes involved in phytosiderophore synthesis have been cloned, including those encoding adenine 
phosphoribosyl transferase (APRT), S-adenosylmethionine synthetase (SAMS), NA synthase (NAS), NA aminotransferase 
(NAAT), iron-defi ciency-specifi c clones IDS2 and IDS3, and dioxygenases that hydroxylate the C-3 and C-2’ positions of MA 
[4,17-22]. All these genes were specifi cally induced in plant roots under iron defi ciency conditions. Two cis-acting elements of 
the barley iron-defi ciency-specifi c clone 2 (IDS2) promoter, the iron-defi ciency-responsive elements 1 and 2 (IDE1 and IDE2), 

Figure 1. Strategies by which plants absorb iron from soil
 Plants other than those belonging to Gramineae reduce Fe(III) to Fe(II) by reductase ferric-chelate reductase (FRO) 

and absorb iron through the Fe(II) transporter iron-regulated transporter1 (IRT1). On the other hand, gramineous 
plants secrete mugineic acids (MAs) into the soil via the TOM1 transporter, and iron intake occurs through the MAs-
Fe(III) complex, mediated by the speci� c transporter yellow stripe 1/yellow stripe1-like (YS1/YSL). Nicotianamine (NA), 
present in all plants, plays a role in iron transport by forming the NA-Fe(II) complex.
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were involved in promoting iron-defi ciency inducibility [23]. The secretion of phytosiderophores exhibits a distinct circadian 
rhythm [14]. The secretion time is likely controlled by the temperature around the roots [24]. The discovery of MAs by Japanese 
researchers has recently led to the elucidation of the mechanisms underlying iron absorption and iron transport in plants and 
mammals [25]. 

These studies establish that MAs are biologically important for grass plants and are biosynthesized at the expense of methionine 
through unique enzymatic reactions. However, since acquiring a large amount of naturally occurring MAs has been technically 
challenging, not much has been elucidated until recently as to whether the application of MAs to plants is suffi  cient for 
complementing the inhibited plant growth under iron-defi cient conditions at the fi eld experiment scale. Moreover, whether the 
phytosiderophores are utilized outside the plant kingdom has not been well understood. This review provides a brief overview of 
the eff ects of MAs on plant growth, possible agricultural impacts of the practical use of chemically synthesized MAs as ‘natural’ 
fertilizers, and the emerging nutraceutical value of NA in iron absorption in mammals.

YS1/YSL transport selectivity
Zea mays yellow stripe1 (ZmYS1) is a transporter of DMA-iron complexes that was fi rst identifi ed in 2001 using maize (Zea 

mays) mutant with yellow-white leaves (chlorosis) due to iron defi ciency [26] ZmYS1 was reported to transport not only iron but 
also various metals complexed with DMA and the divalent NA-iron complex [27]. On the other hand, the absorption of metal 
complexed with MA in barley (Hordeum vulgare) was studied using various radio isotope-labeled metals. It was found that iron 
complexes were specifi cally absorbed [28]. Therefore, barley seemed to have a transporter with a substrate selectivity diff erent 
from that of maize. We isolated and identifi ed a 2430 bp (678 amino acid) long cDNA of the barley transporter Hordeum vulgare 
yellow stripe1 (HvYS1), which shares 72.7% similarity with ZmYS1 [29]. Focusing on the sixth extramembrane loop with low 
homology of the amino acid sequences of HvYS1 and ZmYS1, about 40 amino acid residues in this region were analyzed by 
AGADIR software and CD measurements. The results showed that HvYS1 has an α-helical structure, whereas ZmYS1 has a 
random structure. HvYS1 and ZmYS1 chimeras containing these 40 amino acid residues were expressed in Xenopus oocytes 
and their transport activity was measured. These studies indicated that the sixth extramembrane loop was responsible for the 
substrate specifi city of HvYS1 [30].

In addition to HvYS1 and ZmYS1, further studies have identifi ed 18 and 5 YSL genes in maize and barley, respectively. 
Moreover, YSL family genes with amino acid sequence homology of approximately 60% have been identifi ed in various plant 
species, including 18 from rice (Oryza sativa), eight from Arabidopsis thaliana, six from grape (Vitis vinifera), three from 
the metal-accumulating plant Thlaspi caerulescens, two from Physcomitrella patens, and 18 from Brachypodium distachyon
[11,31,32]. The substrates transported by these YSLs have been reported and are summarized in Table 1 [26, 27, 29, 33-43]. The 
sequence similarity between these YSL transporters and HvYS1 within the 40 amino acid residues in the sixth extramembrane 
loop is relatively low. OsYSL15 [36, 37] and OsYSL18 [38], which transport the iron-MA complex in rice, as well as HvYS1, 
had the highest α-helix percentage of 17.1%. However, recent studies have demonstrated that all functionally characterized YSL 
transporters in A. thaliana, which do not biosynthesize MAs, exclusively transport NA-metal complexes instead of MA-metal 
complexes [39-41, 43]. In fact, this is characteristic of YSL transporters that transport NA-metal complexes in the above-ground 
parts of plants. One example is the OsYSL2, which is expressed in the above-ground part of rice and transports Fe(II) and Mn(II) 
complexed with NA but not with MA [35]. Elucidating the factors that determine the metal complex transport selectivity of 
this YSL transporter is expected to lead to the prediction and modifi cation of substrate selectivity in the future.

Development of an e�  cient synthetic method for mugineic acid and 2'-deoxymugineic acid 
The genes participating in the biosynthesis of MAs in rice have been identifi ed [19, 21, 44], thus raising the possibility of 

engineering rice plants that can acquire iron more effi  ciently. Rice has a lower resistance to iron-defi ciency stress because it 
secretes a small amount of MAs than barley. On the other hand, when rice is grown under fl ooded conditions, iron-defi ciency 
may not be a problem due to soil reduction. Furthermore, under fl ooded conditions, secretion of MA is not an effi  cient way to 
acquire iron due to diff usion of MA in soil solution. In rice plants that are easily transformed, resistance to salty alkaline soil was 
acquired when MA synthesis was enhanced or a proof of concept experiment was conducted. We are interested in whether it is 
more eff ective in the state of upland rice. The amount of MA secretion follows the order: barley > wheat, rye ≫ corn ≫ sorghum 
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plant YS1/YSL
transporter

substrate complex No or weak substrate activity method Reference 
No.

PS or NA metal metal
Zea mays
(corn)

ZmYS1 DMA(PS) Fe(III)- yeast 26
ZmYS1 DMA(PS) Fe(III)-, Cu(II)- Zn(II)- yeast 33

NA Fe(III)- Fe(III)-, Zn(II)-, Cu(II)- 
ZmYS1 DMA (PS) Fe(III)-, Fe(II)-, Zn(II)-, 

Cu(II)-, Ni(II)-, Mn(II)-, 
Cd(II)-

oocytes, 
yeast

27

NA Fe(III)-, Fe(II)-, Ni(II)-
ZmYS1 DMA (PS) Fe(III)-, Zn(II)-, Cu(II)-, 

Ni(II)-, Mn(II)-, Co(II)-
oocytes, 

yeast
29

NA Fe(II)-
Hordeum 
vulgare
(barley)

HvYS1 MA(PS) Fe(III)- Fe(II)-, Zn(II)-, Cu(II)-, Ni(II)-, 
Mn(II)-, Co(II)-

oocytes, 
yeast

29

DMA(PS) Fe(III)-
NA Fe(II)-

HvYSL2 DMA (PS) Fe(III)-, Zn(II)-, Cu(II)-, 
Ni(II)-, Mn(II)-, Co(II)-

oocytes 34

NA Fe(II)-
Oryza sativa
(rice)

OsYSL2 DMA (PS) Fe(III)-, Mn(II)- oocytes 35
NA Fe(III)-, Mn(II)- Fe(III)-, Zn(II)-, Cu(II)-

OsYSL15 DMA (PS) Fe(III)- oocytes, 
yeast

36

NA Fe(III)-, Fe(II)-, Mn(II)-
OsYSL15 DNA (PS) Fe(III)- yeast 37

NA Fe(II)-
OsYSL18 DMA (PS) Fe(III)- Zn(II)- oocytes 38

NA Fe(II)-, Zn(II)-
Arabidopsis 
Thaliana

AtYSL1 NA Fe(II)- mutants 
in Arabi.

39

AtYSL2 MA(PS) Fe(II)-, Fe(III)-, Cu(II) yeast 40
NA Fe(II)-, Cu(II)- Fe(III)-,

AtYSL2 NA Fe(II)-, Fe(III)-, Ni(II) yeast 41
AtYSL3 NA Fe(II)- mutants 

in Arabi.
42

Thlaspi 
caerulescens
(metal 
accumulatrion 
plant)

TcYSL3 NA Fe(II)-, Ni(II)- yeast 43

PS; phytosiderophore DMA; deoxymugineic acid
MA; mugineic acid NA; nicotianamine

Table 1. YS1/YSL transport activities in di� erent crops

≫ rice [45]. Transgenic rice carrying the barley genes involved in MAs synthase, secretion, and transport has been reported to 
be tolerant of iron defi ciency in alkaline soil [25, 46-48]. Hence, if MA can be easily synthesized, it is expected to be a useful 
fertilizer. MAs are amino acid derivatives consisting of three reductively coupled units of azetidine carboxylic acid, aspartic 
acid, and malic acid. The effi  cient coupling of these units is the key to their synthesis. Although many MA and DMA synthesis 
methods were reported [49-58], multiple steps were required to desorb the protecting group of each amino acid unit in all these 
methods. Therefore, we improved the synthetic route based on the new concept of minimizing the use of amino acid protecting 
groups and minimizing the isolation and purifi cation of each synthetic intermediate, establishing a continuous one-pot coupling 
method in which unprotected amino acids and aldehyde equivalents are added one after another [59]. This simplifi ed synthetic 
method aff orded DMA in yields up to 55% from N-Boc-L-allylglycine and enabled many synthetic MAs for mechanistic studies 
of phytosiderophores. So far, this method has been further improved for supply of low cost analog of DMA, PDMA, on a large 
scale (vide infra) [60]. In addition, a unifi ed approach to natural phydosiderophores was recently reported by Stanetty et al [61].
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E� ects of DMA or proline analogs on rice growth
Synthetic MAs seem to have a benefi cial eff ect in approving iron-defi ciency stress in rice [62, 63]. The hydroponic cultures of 

rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values 
after treatment with 3–30 µM DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). 
Surprisingly, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affi  nity nitrate 
transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest 
that exogenous DMA not only plays a vital role in facilitating the uptake of environmental iron but also orchestrates iron and 
nitrate assimilation for optimal growth under high pH conditions. Since MAs showed better growth improvement than other 
synthetic iron chelators, such as EDTA, MAs may have potential for fi eld application in alkaline soil [62, 63]. 

The effi  cient synthesis of DMA made it possible to conduct soil experiments with the addition of DMA. However, the 
instability of the four-membered ring of DMA and the extremely high cost of L-azetidine-2-carboxylic acid, the raw material for 
this four-membered ring, become a major limiting factor for the practical use of DMA as a fertilizer. Therefore, a recent study 
synthesized various analogs of L-azetidine-2-carboxylic acid substituted with stable and inexpensive amino acids and evaluated the 
intracellular transport activity of their trivalent iron chelates using insect cells expressing HvYS1. Results showed that PDMA, 
i.e., DMA modifi ed with L-proline had an iron complex transport activity similar to DMA [60]. Because L-proline is a natural 
amino acid available at a low cost, the synthesis cost of PDMA was reduced to 1/1000–1/10000 in comparison to DMA, thus 
solving the raw material cost problem. Furthermore, while soil microorganisms degrade natural MAs in 1 day, PDMA takes 
approximately one month to be degraded, thus maintaining its eff ectiveness over a long time. Because PDMA is degradable, 
it can be used as an environmentally friendly fertilizer. Therefore, an improved synthetic method suitable for the quantitative 
synthesis of PDMA was developed based on the above synthesis of DMA [60], and a trial was conducted. The results showed 
that PDMA was approximately ten times more eff ective than the existing iron chelators in restoring iron defi ciency in alkaline 
soil (Figure 2) [60].

Iron uptake mediated by nicotianamine in the small intestine.
Iron defi ciency, including severe anemia, occurs worldwide and therefore eff ective remedies are desired. People in Southeast Asia, 

including the Japanese, consume more than 85% of the iron in the form of non-heme iron from plant foods [64, 65]. Humans 
ultimately depend on crops for iron supply; therefore, iron availability to crops is essential [66]. Iron forms a complex with NA 

Figure 2. E� ect of PDMA on rice plants grown in alkaline soil
 (A) Structure of synthetic DMA analog PDMA. 

(B)  Four-week-old rice plants were treated with 30 μM PDMA (left) or without PDMA (right). 
(Provided by Dr. Motofumi Suzuki, Aichi Steel Corporation)
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that transports it mainly to plant stems, leaves, fl owers, seeds and fruits. Activation of OsNAS, which encodes rice NA synthase 
[22], leads to an increase in iron concentration in the leaves and seeds of rice [67-69]. Recently, it was reported that hemoglobin 
levels increased in mice fed with transgenic rice overexpressing NA synthase [70]. The authors concluded that increasing the NA 
amount in transgenic rice also increased iron content, resulting in a higher iron in mice than in those fed with wild-type rice. On 
the other hand, soybean (Glycine max) grains and soy sauce contain a large amount of NA, which is an inhibitor of angiotensin-
converting enzymes and then decreases blood pressure in hypertensive mice [71-73]. A recent study with quantitative analysis 
of NA in plasma showed that it was not decomposed after digestion but carried into the blood [72, 73]. Therefore, it seems 
that iron-chelating compounds produced by soybean, such as NA, are involved in iron absorption and transport in humans.

Iron absorption in humans mainly occurs in the duodenum; iron is absorbed as heme iron from animal foods and as inorganic 
iron from plant foods [74]. Since inorganic iron exists in a trivalent state, it is reduced to divalent iron by the reductase duodenal 
cytochrome B (Dcytb) [75] present in the small intestinal lumen. It is transported into the cell via the divalent metal transporter1 
(DMT1) [76, 77]. The incorporated iron is stored as ferritin or transported via ferroportin1 (FPN1) on the basolateral cell 
membrane [78-80]. It is then oxidized by hephaestin (HEPH) to form iron(III), which binds to transferrin [81]. The mammalian 
absorption mechanism of inorganic iron or nonheme iron, which is abundant in plant foods uses the Dctyb/DMT1 pathway 
(reducion to divalent iron by Dcytb and transport into the cell via DMT1) in the duodenum [74] (Figure 3).

It has been reported that Dcytb is not essential in mice because knocking out this gene from small intestinal epithelial cells did 
not lead to iron defi ciency [82]. Therefore, it is suggested that there is an iron absorption mechanism that is not explained yet 
and that NA, which is essential for iron transport in plants, is also involved in iron transport between cells in mammals. Since 
the NA-Fe(II) complex transporters YS1/YSL of plants belong to a family of oligopeptide transporters [83, 84], they possess 
trans oligopeptides and amino acids from the solute carrier (SLC) family involved in absorption in the small intestine [85, 86]. 
Through screening of transporters, a proton-conjugated amino acid transporter1 (PAT1; SLC36A1) was found in the small 
intestinal epithelial cells [87] and showed a transport activity similar to that of the NA-iron(II) complex (Figure 3) [88]. PAT1 
was expressed in Xenopus oocytes for its electrophysiological activity measurement, revealing that NA-Fe(II) is transported 

Figure 3. Iron absorption mechanism in mammals
 In mammals, iron ingested from plant food is reduced to ferrous iron in the duodenum by duodenal 

cytochrome B (Dcytb) and is absorbed by the divalent metal transporter1 (DMT1). 
(A) The incorporated iron is transported via ferroportin (FPN1) and oxidized by hephaestin (HEPH). 
(B)  It has been revealed that the nicotianamine (NA)-Fe(II) complex is absorbed by the amino acid 

transporter proton-conjugated amino acid transporter 1 (PAT1) in the proximal jejunum. It is 
undecided whether the incorporated NA-Fe(II) complex is transported as it is or as free iron by FPN1.
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by PAT1. In addition, NA-59Fe(II) oral administration in mice showed a high iron intake 30 min after administration in the 
proximal jejunum, where PAT1 expression was also observed. In contrast, when free 59Fe(II) was administered, iron absorption 
and DMT1 expression were observed in the duodenum, indicating that free iron has an absorption site diff erent from that of 
the NA-iron(II) complex (Figure 3) [88, 89]. Furthermore, when comparing NA-59Fe(II) and 59Fe(II) 5 h after administration 
to mice, NA-59Fe(II) complex administration resulted in a higher absorption rate of 59Fe in the spleen and kidney. The ferrous 
iron was given with a high dose of ascorbic acid; absorbed ferrous iron without NA can cause intravascular hemolysis and/or 
hemorrhagic gastric ulcer via Fenton reaction. Subsequently, hemoglobin level was decreased in mice given ferrous iron without 
NA. On the other hand, NA may have prevented the hemolysis, and the hemoglobin level was not changed or a little increased 
from the baseline. These results probably demonstrate the eff ect of NA on iron absorption in mice [88]. Further comparison of 
long-term administration experiments in mice of iron or NA-iron complex is required.

Conclusion
Here, we explained the absorption mechanism of mugineic acid in plants and its application, and the iron absorber in the small 

intestine by the precursor nicotianamine of mugineic acid in plant foods. Research on MAs and their analogs will contribute 
to solving the problem of food shortages caused by population growth and to the greening of poor soil on a global level. On 
one hand, MAs could be used to develop environmentally friendly fertilizers of iron. On the other hand, NA is useful for iron 
uptake and the effl  ux of excess iron in mammals. Free iron elicits a Fenton reaction, which sometimes causes ferroptosis [90]
implicated in pathological cell death associated with degenerative diseases (e.g., Alzheimerʼs, Huntingtonʼs, and Parkinsonʼs 
diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney 
degeneration [91]. Therefore, NA may be preferable for use in chelation therapy. The molecular mechanism that regulates 
iron absorption by nicotianamine remains unclear, and the regulatory mechanism of iron complex transporters in the small 
intestine needs to be elucidated. Further research revealing these points provides new insights for improving iron nutrition and 
contributes to human health. Generally, there are two main strategies for iron acquisition in biological organisms: reduction 

Figure 4. Common molecules functioning in iron uptake in di� erent biological systems
 There are two main strategies for iron acquisition in biological organisms: reduction and chelation. Plants have FRO/

IRT1 and phytosiderophores systems. Bacteria are known to produce siderophores that form complexes with Fe(III) 
for example enterobactin. Staphylococcus aureus has been shown to biosynthesize staphyropine, which is an NA-
like metallophore that forms a complex with Fe(II) recently. Mammals have iron uptake system in intestine; Deytb/
DMT1 uptake Fe(III) and heme transport heme (Fe(II)) in duodenum and PAT1 transport NA-Fe(II) in the proximal 
jejunum. Recent studies have identi� ed the mammalian siderophore as a low molecular weight 2,5-dihydroxybenzoic 
acid similar to the 2,3-dihydroxybenzoic acid found in the bacterial siderophore. Bacterial, plant and mammalian 
siderophores are becoming known to have similar iron absorption mechanisms.
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and chelation. Bacteria are known to produce siderophores that form complexes with Fe(III). Recent studies have identifi ed 
as mammalian siderophore a low-molecular-weight 2,5-dihydroxy benzoic acid with similarities to the 2,3-dihydroxy benzoic 
acid found in bacterial siderophores [92]. Staphylococcus aureus has been shown to biosynthesize staphyropine, which is an NA-
like metallophore that forms a complex with Fe(II) [93, 94] (Figure 4). The structure of bacterial siderophores and respective 
transporters are versatile in general. However, the discovery of NA-like staphyropine from bacteria and the putative function of 
NA in the small intestine suggests the functional and structural convergence of NA as an iron chelator across three kingdoms.
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