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tanning agent, a component of hemodialysis solution and 
drinking water after purification with Al coagulants such 
as aluminum sulphate or polynuclear hydroxyaluminum 
chloride (PAC)[1]. 

Despite its widespread distribution throughout the 
environment, Al is not essential for life, and there is no 
known biological reaction that requires Al. In contrast, 
Al is a well-established neurotoxin. As a component of 
hemodialysis solution or pharmacological compounds, Al 
causes dialysis encephalopathy in hemodialysis patients[2]. 
In the environment, Al is eluted from soils by acid rain and 
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Abstract
Aluminum (Al) is the third most abundant element in the earth’s crust. However, because of its specific chemical 
properties, Al is not essential for life, and it exerts various adverse effects on plants, animals, and humans. In 
particular, Al is a widely recognized neurotoxin. The association between Al and neurodegenerative diseases including 
Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s disease dementia in the Kii Peninsula and Guam has 
been suspected. However, controversy has persisted for several decades. Based on recent epidemiological, analytical, 
and toxicological studies, we review the detailed characteristics of Al neurotoxicity and revisit its link to Alzheimer’s 
disease and other diseases. The daily intake of Al and its bioavailability linked with adverse effects on human health 
are also described.

Key words: �aluminum, Alzheimer’s disease, bioavailability, iron, neurotoxicity

Statements about COI: �All authors declare that there are no conflicts of interests.

1. Introduction
Aluminum (Al) is the third most abundant element in the earth’s crust and is widely distributed throughout the 

environment. Materials containing Al (e.g., clay, glass, and alum) have been used for centuries. In this context, Al is 
considered to be an old and well-known metal. However, Al was first isolated as an element in 1827, and its use as a silvery 
metal began only after 1886. Because Al is light, nonmagnetic, malleable, and ductile, it has widespread and important 
uses in industrial applications and manufacturing of consumer products. From this perspective, Al is a new metal. 

Al is widely distributed throughout the environment and eluted from soils by acid rain. Al can enter the human body 
through foods, cooking utensils, pharmacological agents (such as antacids, antiperspirants, medicine for hyperphatemia, 

and vaccines), occupational exposure such as use as a leather 

Metallomics Research 2021 (1) #MR202104

https://metallomicsresearch.brte.org

This work is licensed under a Creative Commons Attribution 4.0 International License.  
©2021 Kawahara M. et al.



rev-48

Neurotoxicity of aluminum and its link to neurodegenerative diseases Kawahara M. et al.

Metallomics Research 2021 (1) #MR202104

causes toxicity to plants and fishes. Furthermore, Al has been linked to various neurodegenerative disorders including Alzheimer’s 
disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease dementia (PDD) in the Kii Peninsula and Guam, 
Gulf-war syndrome, and autism spectrum disorder (ASD)[3-6]. 

In particular, a crucial link has been established between Al and AD. AD was first reported in 1906 and now accounts for 
approximately 60% of senile dementia cases. The pathological hallmarks of AD are the deposition of β-amyloid protein (AβP) 
as extracellular senile plaques and the presence of phosphorylated tau protein in intracellular neurofibrillary tangles (NFTs)[7].  
It has been suggested that the risk factors of AD are age, sex, family history, apolipoprotein E phenotype, head trauma, and 
Al exposure[8]. The hypothesis that Al is an environmental contributor to the pathogenesis of AD, termed the “aluminum 
hypothesis”, was proposed in the 1960s based on various neurotoxicological, analytical, and epidemiological findings [9-12]. 
Despite these findings, the aluminum hypothesis has been the subject of much debate and criticism for several decades[13]. Great 
progress has been made in AD research and Al toxicology research during this period, particularly in epidemiological findings 
about drinking water contaminated with Al and occupational exposure of Al, accumulation of Al in the AD brain, implication 
of Al in the conformational changes of AβP, and characteristics of Al-induced neurotoxicity. Therefore, it is good time to review 
Al neurotoxicty, especially based on new findings.

In this review, we focus on the neurotoxicity of Al based on its chemical properties and revisit the significance of Al in the 
pathogenesis of AD. We describe the daily intake of Al and its bioavailability and association with human health, particularly 
in infants. 

2. Chemical characteristics of Al and its effects on the central nervous system
Despite its environmental abundance, Al is not an essential element and has no known function that is crucial for living 

organisms. This may be because of several specific chemical characteristics of Al[14].
Al exhibits only one oxidation state, Al3+. In acidic solutions with pH < 4, Al3+ exists as the soluble octahedral hexahydrate 

Al(H2O)6
3+. In neutral solutions, Al3+ forms an insoluble hydroxide, Al(OH)3; thus, the concentration of free Al3+ under 

physiological conditions is usually very low. In alkaline solutions with pH > 9.6, Al3+ exists as the soluble tetrahedral Al(OH)4
−. This 

chemistry suggests that a low level of Al is present in the seawater from the era when life first evolved. Indeed, the concentration of 
Al in the earth’s crust, which is termed as the lithospheric abundance of Al, is 82,000 ppm[15]. Meanwhile, the concentration of 
Al in the human body, the biospheric abundance, is only 0.9 ppm. Thus, the biospheric/lithospheric ratio of Al (approximately 
1.1×10−5) is extremely low compared with that of other essential elements such as calcium (Ca: 0.35), iron (Fe: 1.5×10−3), and 
zinc (Zn: 0.44). 

Al3+ has affinity for negatively charged, oxygen-donor ligands and strongly binds to inorganic and organic phosphates, 
carboxylate, and deprotonated hydroxyl groups. By this mechanism, Al3+ can bind to DNA and RNA and influence the expression 
of various genes such as those coding for neurofilament, tubulin, neuron specific enolase, mitochondrial cytochrome oxidase, 
nerve growth factor, and brain derived neurotrophic factor (BDNF)[11,16]. Lukiw et al. reported that nanomolar levels of 
Al3+ were sufficient to influence neuronal gene expression[17]. Al3+ also binds to the phosphate groups of nucleoside di- and 
triphosphates, such as ATP, and inhibits hexokinase, phosphofructokinase, and glucose-6-phosphate dehydrogenase[18], and 
therefore, Al3+ influences energy metabolism. Al also influences the functions of other protein kinases and phosphatases such 
as protein kinase C and Ca2+/calmodulin-dependent protein kinase[11,19]. Interestingly, Al inhibits dephosphorylation of tau, 
the main component of AD-NFTs[20]. 

Al3+ has a very low ligand exchange rate compared with other metal ions. For example, the ligand exchange rate of magnesium 
(Mg2+) is 105 times higher compared with that of Al3+, and that of Ca2+ is 108 times greater. Therefore, Al cannot participate 
in Ca2+- or Mg2+-related enzymatic reactions and inhibits numerous enzymes with Mg2+ and/or Ca2+ cofactors. Because of its 
low ligand exchange rate, Al has a prolonged half-life in the body. Once it enters the brain, Al is retained and semi-permanently 
accumulates.

Meanwhile, there have been studies suggesting that Al affects the synaptic transmission via the mechanism related to Ca2+. It 
has been reported that Al3+ inhibits various enzymes that regulate neurotransmitter synthesis, such as catecholamine o-methyl 
transferase, tyrosine hydroxylase, dopamine β-hydroxylase, choline acetyl transferase, tyrosine hydroxylase, and glutamate 
decarboxylase[11]. Moreover, Al inhibits various ion channels and neurotransmitter receptors including sodium (Na+) channels, 
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potassium (K+) channels, voltage-gated Ca2+ channels, N-methyl-D-aspartate-type glutamate receptors, and receptors of 
catecholamine-related neurotransmitters[21]. By the inhibition of neurotransmitter synthesis and receptors including voltage-
gated Ca2+ channels, Al3+ impairs synaptic transmission and Ca2+ homeostasis. 

Al3+ has similar characteristics to Fe3+ and binds to Fe-binding proteins such as transferrin and Fe chelators such as deferoxamine. 
Therefore, Al3+ affects Fe homeostasis and Fe-induced expression of various genes containing iron responsive elements (IREs) in 
their mRNA. Furthermore, Al3+ stimulates Fe-induced lipid peroxidation and causes oxidative damage in vitro and in vivo[22,23]. 
Increasing evidence suggests that Al acts as a pro-oxidant and induces reactive oxygen species (ROS) production, although Al 
is a non-redox-active metal[24-27]. It is also notable that co-exposure to Al and 6-hydroxydopamine, a model compound of 
Parkinson’s disease, enhanced the auto-oxidation-induced oxidative stress in brain mitochondrial preparations[28]. 

As mentioned above, Al has been used as a leather tanning agent for many centuries, since Al3+ strongly binds to proteins, 
causing cross-linking and finally inducing conformational changes. Because Al3+ has strong positive charges with a relatively 
small ionic radius compared with other metal ions (such as Ca2+, Zn2+, and Na+), Al3+ firmly binds to metal-binding amino 
acids (histidine [His], tyrosine [Tyr], and arginine [Arg]) and phosphorylated amino acids. The strong binding of Al3+ to 
phosphorylated amino acids promotes the self-aggregation of highly phosphorylated cytoskeletal proteins such as neurofilaments 
and microtubule associated proteins. Furthermore, Al inhibits proteolytic degradation of AβP by cathepsin D[28]. Thus, Al 
induces the accumulation of AβP as well as cytoskeleton proteins including neurofilaments, tau, and microtubule associated 
protein 2. The details of this process are discussed in section 4-1. 

Because of these chemical properties, Al3+ reportedly influences the expression of various genes crucial for brain function 
and participates in more than 200 biologically important reactions[9,11]. These include processes crucial for brain functions, 
such as axonal transport, synaptic transmission, phosphorylation or dephosphorylation of proteins, protein degradation, and 
inflammatory responses. Fig. 1 summarizes the effects of Al on the central nervous system. Once Al passes through the blood 
brain barrier and enters the brain by binding with transferrin and/or citrate (Ctr), it induces various adverse effects. Al binds to 
the phosphates of DNA/RNA and inhibits expression of various genes. It also perturbs Fe homeostasis and affects Fe-related gene 
expression. Al influences numerous enzymes including kinases, phosphatases, and enzymes that require Ca2+ and/or magnesium 
Mg2+ as a cofactor. Al impairs mitochondrial energy producing pathways by binding to ATP and by inducing the generation of 
ROS. Al also induces endoplasmic reticulum (ER) stress. Furthermore, Al causes cross-linking of and conformational changes 
in proteins and finally induces the accumulation of proteins including AβP, neurofilaments, and tau. 

Fig. 1.	 Effects of aluminum (Al) on the central nervous system.
	 Al causes numerous adverse effects on the central nervous system. Details are shown in the text.
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3. Neurotoxicity of Al
3-1. Al neurotoxicity in vitro

Because Al possesses these specific chemical characteristics, Al impairs various crucial neurological functions and eventually 
causes death of neurons and glial cells. We have reported that chronic application of AlCl3 to primary cultured cortical neurons 
induced the accumulation of tau protein and AβP and the impairment of synapse formation, which are similar to the pathological 
changes observed in AD[30]. To explore the molecular mechanisms of Al neurotoxicity, its chemical speciation, namely, the types 
of ligands that coexist with Al and their concentrations, must be considered. The lability, stability, and hydrophobicity of Al 
compounds are dependent on the counterions because Al3+ easily forms insoluble Al(OH)3 in aqueous solutions at physiological 
pH values[31]. 

Al binds to maltol (3-hydroxy-2-methyl-4-pyrone) and forms the hydrolytically stable complex termed aluminum maltolate 
(Al(malt)3)[32]. It has been reported that the toxicity of Al(malt)3 is higher than those of other Al compounds. We have examined 
the viability of primary cultured neurons after exposure to identical concentrations of four Al compounds, including the simple 
salt of Al3+ (AlCl3), a relatively stable and hydrophilic complex (aluminum lactate (Al(lac)3)), and two lipophilic Al species 
(Al(malt)3 and aluminum acetylacetonate (Al(acac)3)) [33]. Al(acac)3 and Al(malt)3 exhibited higher toxicity than AlCl3 or Al(lac)3. 
We have also demonstrated that Al(malt)3 induced synaptic loss and death in primary cultured rat hippocampal neurons and that 
BDNF attenuated its toxicity[34]. Al(malt)3 inhibits the increase in the intracellular Ca2+ level induced by BDNF, but it does 
not influence the increase in the intracellular Ca2+ level induced by KCl or glutamate[35]. Based on these results, it is possible 
that depletion of neurotrophic factors and disruption of Ca2+ homeostasis may be involved in Al(malt)3-induced neuronal death. 

Al(malt)3 has been used as a convenient tool to investigate the molecular mechanisms of Al neurotoxicity. Al(malt)3 reportedly 
causes apoptotic cell death by inducing an inflammatory response in neuronal cell model such as PC12 cells and SH-SY5Y 
cells[36]. Al(malt)3 induces mitochondrial oxidative stress[37] and ER stress via PERK-Elf2a signaling pathway[38] in SH-SY5Y 
cells. Recent studies suggested that Al(malt)3 also triggers non-apoptotic cell death including ferroptosis in PC12 cells[39] and 
necroptosis in SH-SY5Y cells [40].

Another crucial feature of the chemical speciation of Al is pH-dependent polymerization. As the pH increases, Al readily forms 
polynuclear hydroxy-Al complexes. In solutions at pH 5, aluminum tridecamer (Al13; [AlO4Al12(OH)24(H2O)12]7+) is a dominant 
species[41], as shown in Fig.2A. In soils in which the pH has been decreased by acid rain, the eluted Al causes toxicity to plants 
and fishes. Al13 formed in the soil was reported to be more toxic to the growth of plant roots than monomeric Al3+ [42]. It is 
hypothesized that Al13 binds to the phosphate groups in the cell membrane and thereby inhibits various cellular functions[43]. 
Al13 has been shown to form in synaptosomes incubated under neutral pH conditions[44]. Al13 might exist in our environment, 
since polynuclear hydroxyaluminum chloride (PAC) is widely used in the water purification process in Japan[1]. 

We have developed a pulse-exposure method by which cultured neurons can be exposed to chemically-identified Al species[45]. 
Using 27Al-NMR, we have confirmed that Al3+, Al13, and Al(malt)3 are stable in 100 mM HEPES buffer (pH 7.0). Cultured 
neurons were exposed to solutions of monomeric Al3+, Al13, and Al(malt)3 in this condition. After 1 h, the buffer was replaced 
with usual culture media, and the incubation was continued. At 14 days after the pulse exposure (200 µM for 1 h), Al13-exposed 
neurons as well as Al(malt)3-exposed neurons exhibited significantly decreased cell viability compared with those exposed to Al3+ 
(Fig.2B). Use of this technique with primary cultured neurons will provide a convenient tool to investigate the neurotoxicity 
of chemically-identified Al species.
3-2. Al neurotoxicity in vivo

Al also causes neurodegeneration in experimental animals and impairs various brain functions related to learning, memory, 
and behavior. Intracerebral administration of Al induces epilepsy in experimental animals, which have been used as models for 
epilepsy research [46]. Increasing evidence suggests that chronic administration of Al compounds in diets or drinking water 
causes various detrimental effects in experimental animals. Oral administration of AlCl3 for 7 days caused neurobehavioral 
changes, increased oxidative stress, and decreased acetylcholine esterase and neurotransmitter levels of aged rats[47]. Exposure to 
AlCl3 in drinking water caused long-term memory impairment and influenced BDNF gene expression in rats[48]. Al reportedly 
induces dendritic spine loss, ultrastructural changes in synapses, spatial memory deficits, and decreased emotional reactivity in 
rats [49,50]. Al also impairs long-term potentiation (LTP), which is a form of synaptic information storage and a paradigm of 
memory mechanisms in rats[51]. Zhang et al. demonstrated that chronic exposure to AlCl3 in drinking water for 90 days caused 
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apoptotic death in the hippocampus via the IL-1β/JNK signaling pathway, neurobehavioral changes, and changes in synaptic 
plasticity in rats[52]. Al also impairs hippocampal neurogenesis in infant mice as well as in adult mice[53,54]. 
3-3. Al neurotoxicity in humans

An association between Al poisoning and memory disorder in humans was first reported in 1921[55]. Later, Al was found to 
cause dialysis encephalopathy in hemodialysis patients because Al is present in dialysis solution or in pharmacological compounds 
as treatments for hyperphosphatemia[2]. Al induces various dialysis-related disorders, including osteomalacia (Al bone disease), 
microcytic anemia, and β2-microglobulin-associated amyloidosis in dialysis patients[56]. Although the use of Al-containing 
agents in dialysis patients is prohibited in many countries, recent studies suggest an association between the serum Al level and 
the risk of uremic pruritus and increased mortality in chronic hemodialysis patients[57,58].

In 1988, in Camelford (Cornwall, U.K.), drinking water was accidentally contaminated by Al, and more than 20,000 people 
were exposed to high levels of Al for several days. Residents who were exposed to Al exhibited various symptoms related to cerebral 
impairment such as inability to concentrate, short-term memory loss, and poor psychomotor performance in a 10-year follow-up 
study[59]. Exley and Esiri demonstrated the deposition of high amounts of Al in the brain of a resident who was exposed to Al 
and died 15 years later[60]. This 58-year-old woman exhibited unspecified neurological symptoms and a rare form of sporadic 
cerebral amyloid angiopathy that was characterized by AβP deposition in blood vessels. Al-specific fluorescence microscopy 
along with congo red staining exhibited co-localization of Al and AβP in the brain of this patient[61]. Another case study of 
a resident who died 26 years after the incident exhibited similar characteristics to AD patients such as deposition of AβP and 
phosphorylated tau as well as increased Al in senile plaques[62]. An increased Al level was also observed in the hippocampus 
of another resident who suffered from epilepsy[63]. Mold et al. observed the intracellular accumulation of Al in inflammatory 
cells and glial cells in the brain of the other resident who suffered cerebral amyloid angiopathy [64]. These studies indicate that 
short-term exposure to Al can cause prolonged accumulation of Al in the human brain for many years and may finally cause 
various neurological symptoms.
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Fig. 2.	 Chemical speciation of aluminum (Al) and its neurotoxicity
	 A: �27Al-nuclear magnetic resonance (NMR) spectrum of Al solutions at different pH values. 

The NMR spectra of 10 mM solutions of Al at pH 3.7 (a), pH 4.4 (b), and pH 5.0 (c) were recorded using a GX-400 
(Hitachi, Tokyo Japan). The standard peak (0 ppm) was adjusted according to Al(NO3)3. The arrow indicates the peak 
corresponding to Al13 at 63.5 ppm. The data are modified from Ref No.45 with permission.

	 B: �The viability of cultured neurons after pulse-exposure to Al  
After 14 days of pulse-exposure to 50–200 µM monomeric Al3+ (monomer), Al13, or Al(malt)3, the cell viability was 
examined using the WST-1 method. Data are expressed as means±SEM. * p<0.05, ** p<0.01. The data are modified 
from Ref No.45 with permission.
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4. Link between Al and Alzheimer’s disease
4-1. Al and the amyloid cascade hypothesis in AD 

The link between Al and AD is supported on many findings, beginning in 1965 with the finding of Klatzo et al. that the 
intracerebral administration of Al to rabbits induced the neurofibrillary degeneration and the appearance of tangle-like structures 
that were similar to the NFTs found in the brains of AD patients[10]. Moreover, Crapper et al. reported an increased level of 
Al in the brains of AD patients[65]. In the 1970s, Al was found to cause dementia in dialysis patients (dialysis encephalopathy) 
as mentioned above[2]. 

Although the precise causes of AD are still under investigation, numerous biochemical, toxicological, cell biological, and genetic 
studies have supported the “amyloid cascade hypothesis”, namely, that the accumulation of AβP and its neurotoxicity play a 
central role in the pathogenesis of AD[66,67]. AβP is a small peptide consisting of 39–43 amino acid residues that is secreted 
after cleavage of the amyloid precursor protein (APP) N-terminus by β-APP cleaving enzyme (BACE) and intramembrane 
cleavage of its C-terminus by γ-secretase[7]. 

It is widely accepted that conformational changes of AβP induced by oligomerization enhance its neurotoxicity. Approaches 
using size-exclusion chromatography, gel electrophoresis, and atomic force microscopy have demonstrated that the soluble 
oligomers of AβP are synaptotoxic and neurotoxic[66]. 

Considering that AβP is secreted in the cerebrospinal fluid of young individuals as well as in older adults and in AD patients[68], 
factors that accelerate or inhibit its oligomerization may play essential roles in the pathogenesis of AD. Several factors such 
as peptide concentration, pH and composition of solvents, and temperature can influence the oligomerization process[67]. 
Interestingly, rodent (rats or mice) AβP exhibits less of a tendency to oligomerize than primate (humans or monkeys) AβP in 
vitro, and accumulation of AβP is rarely observed in the brains of rodents compared with primates[69]. The amino acid sequences 
of human and rodent AβP are similar; rodent AβP differs from primate AβP by only three amino acids (Arg5, Tyr10, and His13) 
as shown in Fig.3. Considering that these three amino acids have the ability to bind metals, trace elements including Al3+ are of 
particular interest as potential acceleratory factors and might play important roles in the accumulation of AβP in the human brain.

Exley et al. firstly demonstrated by circular dichroism spectroscopy that Al induces a conformational change in the first 40 
amino acid residues of AβP (AβP(1-40))[70]. Al has also been shown to promote the oligomerization of 125I-labeled AβP(1-
40), and Fe and Zn have shown similar effects[71]. Using immunoblotting and high-performance liquid chromatography, we 
found that Al remarkably enhances the oligomerization of AβP(1-40) compared with other metals, including Zn2+, Fe3+, copper 
(Cu2+), and cadmium (Cd2+)[72,73]. Al-oligomerized AβP(1-40) was sodium dodecyl sulfate-stable, but it could be re-dissolved 
by adding deferoxamine, an Al chelator. 

Other metal ions such as Zn2+, Cu2+, and manganese (Mn2+) induced oligomerization of AβP[74-76]. However, the 
characteristics (size, morphology) of AβP oligomers formed in the presence of Al, Zn Cu, and Fe were different according to 
atomic force microscopy images[77]. Sharma et al. reported that Zn-oligomerized AβPs were less toxic than Cu-oligomerized 
AβPs[78]. For the comparison of the toxic effects of Al-oligomerized AβPs to that of Zn- oligomerized AβPs, we exposed Al- 
oligomerized and Zn- oligomerized AβPs to cultured hippocampal neurons[33]. After 4 days, Al-oligomerized AβPs bound 
tightly to the surface of cultured neurons and formed fibrillar deposits, meanwhile Zn-oligomerized AβPs were rarely observed. 
These results suggest that Al-oligomerized AβPs have a strong affinity for membrane surfaces of neurons and undergo minimal 
degradation by proteases. Indeed, Al has been shown to inhibit the degradation of AβP as a result of conformational changes. 
Meanwhile, AβP coupled with Al is more toxic than AβP alone, causing membrane disruption and perturbation of neural Ca2+ 
homeostasis and mitochondrial respiration[79]. Bolognin et al. demonstrated that Al-oligomerized AβPs induced overproduction 
of APP and tau, but AβP oligomers that were formed in the presence of other metals (Cu, Fe, and Zn) did not[80]. 

Increasing evidence suggests that chronic application of Al resulted in accumulation of AβP in cultured neurons from the rat 
cerebral cortex, neuroblastoma cells, and other neuronal cells[81-84]. Pratico et al. found that orally administered Al caused a 
marked increase in the amount of AβP in both its secreted and accumulated forms and increased deposition of senile plaques in 
AD model mice transfected with the human APP gene (Tg2576)[85]. These results are consistent with other studies demonstrating 
that oral Al intake induces AβP accumulation in the brain and impairs spatial learning and memory in AD model mice[86]. 

Furthermore, other recent studies have demonstrated the accumulation of AβP in brains of Al-intoxicated rats[87-89]. Al also 
induced other characteristics of AD pathogenesis such as neuronal death, synaptical changes, and memory disorders[90-93]. 
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Therefore, Al-induced animal model has been used as a model for AD, and several substances were reportedly effective in the 
prevention of Al-induced neurotoxicity[94,95]. 

Al has been reported to bind and cause conformational changes in other AD-related proteins, including APP[96], tau protein, 
and paired helical filament-tau protein[97], and in proteins related to other diseases such as α-synuclein (PDD and dementia with 
Lewy bodies (DLB))[98-100], islet amyloid peptide (IAPP) (diabetes mellitus)[101,102], ABri (familial British dementia)[103], 
ataxin 3 (spinocerebellar ataxia type 3)[104], and β2-microglobulin (dialysis-related arthropathy)[105]. As shown in Table 1, Al 
also binds to neurofilament or to albumin and other serum proteins such as trypsin, transferrin, lactoglobulin[106]. Recent lines 
of evidence suggest that diverse human disorders including several neurodegenerative diseases may arise from the misfolding and 
aggregation of underlying proteins[107]. 

This concept of “conformational disease (protein misfolding diseases)” may explain the common mechanism that underlies 
various disorders. Under this concept, AD, prion diseases, and dementia with Lewy bodies (PDD) are categorized as conformational 
diseases. Considering that proteins including AβP, α-synuclein, and human IAPP are also related to conformational diseases, 
Al-induced conformational changes of these proteins might be associated with other neurodegenerative diseases.

Table 1.	 Al-induced conformational changes of proteins
Table 1. Al-induced conformational changes of proteins              

Disease-related proteins 

Alzheimer’s disease 

 AβP[1-40]: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV   

AβP[1-42]: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA   

AβP[25-35]:GSNKGAIIGLMV    

 AβP[1-16]: DAEFRHDSGYEVHHQK 

APP        

 Tau or hyperphosphorylated tau (PHF-tau)    

   Parkinson’ s disease and other diseases with Lewy body  

 α-synuclein (NACP)      

   Type 2 diabetes mellitus 

 Islet amyloid protein (Human amylin): 

 KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY   

 Pro islet amyloid polypeptide (Pro IAPP) 

   Familial British dementia 

ABri: ASNCPAIRHPGNKPAVGTLICSRTVKKNIIGGN 

   Spinocerebellar ataxia 

 Ataxin 3        

   Dialysis-related arthropathy 

 β2-microglobulin       

Non-disease related proteins 

neurofilament  

   human serum albumin (HSA) 

bovine serum albumin (BSA)  

milk β-lactoglobulin (β-LG) 

Hen Egg-white lysozyme   

trypsin and trypsin inhibitor  

transferrin  
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Al also influences the production of AβP via the expressions of APP and disrupts Fe homeostasis. APP is a metal-binding 
protein and is involved in the regulation of metal homeostasis at synapses[108]. APP possesses Cu and/or Zn binding sites at its 
N-terminus. APP has also been implicated in Fe2+ efflux along with ferroportin. Moreover, Fe controls APP expression because 
its mRNA possesses an IRE domain. The concentration of free Fe2+, which causes formation of toxic free radicals, is generally 
regulated by the expression of Fe-binding proteins such as ferritin or transferrin through the IRE/iron regulatory protein (IRP) 
network[109]. Under Fe-deficient conditions, IRP binds to the IRE. As the concentration of free Fe2+ increases, the binding of 
Fe to IRP causes down-regulation of transferrin and up-regulation of ferritin, and the amount of free Fe2+ is thereby decreased. 
Rogers et al. found that APP mRNA contains an IRE domain, and their expression is regulated by Fe[110]. Other disease-
related genes such as α-synuclein and prion protein also possess an IRE domain[111]. Because Al and Fe share similar chemical 
characteristics, Al3+ reportedly binds to IRP[112,113], and therefore, Al can influence the expression of Fe-binding proteins 
with IREs in their mRNA, resulting in elevation of the Fe concentration. Al also influences Fe uptake in cultured neurons and 
glial cells[114]. Indeed, Al reportedly induces elevated APP expression in experimental animals[115,116]. There have been other 
studies which suggested that Fe homeostasis is implicated in AD pathogenesis. A Fe-related gene, transferrin C2, was revealed 
to be a risk factor for AD[117], and Imagawa et al. reported that Fe supplementation was effective for recovery of cognitive 
function of familiar AD[118]. Thus, the interactions between Al and Fe may be central to the pathogenesis of AD. Figure 3 
also exhibits the effects of Al on the expression of APP, the secretion of AβP, and its oligomerization. APP is a Zn and/or Cu-
binding protein and is implicating in the regulation of metal homeostasis such as controlling Fe2+ efflux with ferroportin (FPN) 
at synapse. Abnormal APP expression induced by Al leads to the disruption of metal homeostasis and the increased amount of 
AβP. Normally, secreted AβP is degraded by various proteases. However, AβP that is aggregated in the presence of trace metals, 
including Al, Zn, Cu, and Mn, is resistant to proteases and accumulates in the brain. The oligomerized AβPs can be easily 
incorporated into membranes and cause neuronal death. Al and other metals may participate in these degenerative processes 
and could be linked to the pathogenesis of Alzheimer’s disease. 
4-2. Accumulation of Al in the AD brain

The accumulation of Al in the brain of AD patients supports the association about Al and AD pathogenesis. After the finding 
of Crapper et al.[65], similar results supporting elevated Al in AD brains were reported[119-122], as well as the controversy 
results[123]. However, prior studies examining Al have been controversial because Al contamination of tissue samples can easily 
occur during fixation and staining. Thus, quantitative analysis of non-fixed and freshly frozen tissues is necessary. Andrási et 
al. reported higher Al and lower Mg and P in AD brain[124]. Although several studies have claimed that Al is absent in senile 
plaques or NFTs[125], this may be caused by limitations of their analytical methods in detecting low levels of Al. Bouras et 
al. used highly sensitive laser microprobe mass analysis (LAMMA) with non-fixed brain samples and reported accumulation 
of Al in NFT-bearing neurons of AD brains[126]. Accumulation of Al in both senile plaques and NFTs has been reported in 
renal failure patients[127]. Yumoto et al. analyzed Al using energy-dispersive X-ray spectroscopy combined with transmission 
electron microscopy (TEM-EDX), a method that yields a high resolution and has a low detection limit[128]. Their detailed 
analysis demonstrated that Al was present in cores of senile plaques at a concentrations of 35–50 ppm. They also demonstrated 
the co-localization of Al and Fe in the nucleus of AD brains[129]. Exley and coworkers demonstrated Al deposition colocalized 
with amyloid plaques and NFTs in the brains of familial AD patients using Al-specific fluorescence microscopy[130,131]. They 
also investigated the amount of Al in the brains of patients with various neurodegenerative diseases and found elevated Al levels 
in patients with sporadic AD, familial AD, ASD, and multiple sclerosis compared with controls[132]. Lukiw et al. reported the 
increased Al content in brains of AD patients by 36-year multicenter study[133]. Recent meta-analysis of 34 studies demonstrated 
the significantly higher Al in brain, serum, and cerebrospinal fluid of AD patients[134]. 
4-3. Epidemiology of Al and dementia

The reported risk factors of AD include age, gender, family history, apolipoprotein E polymorphism, head trauma, and Al. 
Among them, Al in drinking water has been a focus of study since 1989 when Martyn et al. reported a high incidence of AD in 
areas with high levels of Al in the drinking water in England and Wales[135]. After this initial report, a considerable number of 
studies provided evidence to support an association between AD and Al in drinking water[136]. McLachlan et al. found that 
an elevated risk of histopathologically verified AD is associated with the consumption of high concentrations of Al in drinking 
water[137]. Rondeau et al. demonstrated that high daily intake of Al was correlated with an increased risk of dementia or cognitive 
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decline in a 15-year-follow-up French cohort study[138]. A meta-analysis of eight cohort and case-control studies with a total of 
10,567 individuals suggests that the chronic exposure to Al has an association with increased risk of AD[139]. Bagepally et al. 
conducted a meta-analysis of 16 studies investigating the relationship of Al with dementia that included one high quality study 
and 13 moderate quality studies with almost 22,000 participants[140]. Among them, one high quality study and six moderate 
quality studies found an association between increased Al levels in drinking water and increased dementia risk. A recent study 
using the Canadian Study of Health and Aging cohort data suggested an increased, although not significant, association of Al 
in drinking water with AD risk [141].

Considering that the amount of Al consumed in drinking water is approximately 5% of the total daily intake, it is possible 
that some factors that prevent or accelerate Al absorption may be present in drinking water. Silicate (Si) in water was reported to 
interact with Al and prevent Al toxicity in fishes. In a French cohort study, the relationship between Al and cognitive impairment 
was suggested to be influenced by the Si concentration[142]. Cognitive impairment among women was correlated with low Si 
concentrations in drinking water[143]. Meanwhile, fluoride (F) binds to Al, and aluminum fluoride (AlF3) possesses various 
biological functions. Al and F in drinking water have been demonstrated to be risk factors for dementia in both men and women 
in Scotland[144]. 

Several studies have indicated that occupational exposure to Al induces adverse effects on human memory. The longitudinal 
study suggests a chronic Al exposure among Al workers in China can damage cognitive functions including episodic memory 
and that higher plasma Al level is associated with the mild cognitive impairments[145]. Shang et al. demonstrated by their cross-
sectional study that increased Al and lithium (Li) and decreased Zn levels in plasma are related to cognitive impairment in Al 
workers[146]. Furthermore, plasma Al levels were associated with cognitive performance in Al-exposed workers in China[147]. 
Mohammed et al. demonstrated an association of plasma Al and tau levels and cognitive dysfunction in Al foundry workers[148]. 
Miners that inhaled Al dust exhibited increased mortality from AD, although the increase was not statistically significant[149]. 
A 55-year-old woman who was exposed to Al-containing paints and had a high serum Al level exhibited movement disorders 
(tremors of the hands and head, polyminimyoclonus, and dystonic posturing of the hands) and symptoms of dementia[150]. 

Considering these increasing new lines of evidence regarding Al, it is difficult to agree with the early criticisms of the aluminum 
hypothesis. Although the precise mechanism underlying AD pathogenesis remains elusive, the significance of Al in the pathogenesis 
of AD needs to be revisited. 

5. Al and human health
5-1. Intake, bioavailability, and excretion of Al

Neurotoxicological, analytical, and epidemiological studies have demonstrated that Al is toxic to the central nervous system 
and causes dementia when it enters the brain, even though the link between Al and AD is controversial. Therefore, the Al levels 
in the body and brain are crucial to consider when determining the risk of Al to human health. The primary source of Al in 
humans is food. In general, the Al levels in most foods are low and vary within a wide range, although the concentration of Al 
in several plants are very high. The daily intake of Al is estimated to be 10-20 mg/day[151]. Contamination from food additives 
such as baking powder or from cooking utensils accounts for a considerable part of Al intake. The National Food Administration 
in Sweden reported in 1992 that the daily intake of Al in Sweden was estimated to be 13 mg[152]. Since baking powder contains 
Al, cakes or breads used baking powder contribute much in Al intake. The use of Al utensils was estimated to increase the Al 
intake by approximately 2 mg/day. As other sources of Al, Al is present in the drinking water because it is used as a coagulant 
in the water treatment process. Respiratory absorption of Al is important, although it is difficult to estimate. Atmospheric fine 
particulate matter (PM2.5) contains much Al, and rats exposed to PM2.5 dust reportedly exhibited an elevated Al level in the 
cerebral cortex[153]. 

In 1989, a joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) 
recommended a provisional tolerable weekly intake (PTWI) of 7.0 mg/kg body weight of Al. In 2007, this was changed to 1.0 
mg/kg body weight because of its potential effects on the reproductive system and the developing nervous system. However, it 
was estimated that several foods contained much amount of Al and exceeded this PTWI value when the food consumed by a 
16-kg infant. In 2011, this PTWI value was further changed to 2.0 mg/kg body weight[154]. 
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5-2. The bioavailability and biological fate of Al 
The absorption rate of metals including Al by the gastrointestinal tract is low and widely varies. Thus, the bioavailability 

of Al, namely, the amount of Al that is absorbed in the gastrointestinal tract and transported to the brain through the blood 
brain barrier, is crucial for human health. The lack of appropriate radioactive isotopes of Al has made it difficult to study on 
Al bioavailability. However, the analyses using accelerator mass spectrometry and 26Al, a non-radioactive isotope of Al, have 
advanced this area of study[155]. Using this approach, it became clear that a small amount of Al (approximately less than 1%) is 
absorbed from food via the gastrointestinal pathway; however, this amount is influenced by various factors including individual 
differences, age, pH, stomach contents, chemical speciation of Al, and coexisting substances[156]. For example, the absorption 
of Al hydroxide (Al(OH)3), a main component of antacids, is much lower than that of Al citrate. The coexistence of organic 
ligands such as citric acid or maltol promotes the absorption of Al, while Si prevents its absorption. Although the consumption 
of tea greatly contributes to the daily intake of Al, the Al in tea infusion is adsorbed at a low level[157]. It is possible that Al eluted 
from cooking utensils is highly bioavailable because the stopping of the use of Al utensils has decreased serum Al levels[158]. 
Fe, which possesses similar chemical characteristics to Al, in the utensils is reportedly also easily adsorbed[159,160]. Arabi et al. 
demonstrated that mice exposed to boiled water from old Al cookware exhibited cytotoxic and genotoxic changes[161]. The 
rate of Al absorption is increased in older people, patients with Down’s syndrome, and patients with AD[162].

Once absorbed from the gastrointestinal tract, Al rapidly appears in the blood, and approximately 80% of Al is transported by 
binding to transferrin, a Fe transporter protein; the remaining Al binds to albumin and citrate[163]. Approximately 50% of Al 
in the serum is excreted in the urine through the kidneys. Thus, high Al levels are observed in the bodies of patients with renal 
failure or kidney disease. Additionally, half of the Al amount is accumulated in the bone. A small, but considerable amount of 
Al can cross the blood brain barrier, possibly through the transferrin-receptor pathway or monocarboxylate transporters, and 
enter the brain. Then, Al remains in the brain and accumulates semi-permanently[136,164]. Kobayashi et al. reported that 
intraperitoneally or orally administered 26Al was transferred to the brain and the amount of Al in the brain was not changed 
after 35 days, although Al in the serum disappeared rapidly[165]. The amount of Al in human bodies increases in age-dependent 
manner, although other trace elements don’t[166]. Thus, it is possible that the brain has little ability to eliminate Al. Figure 4 
summarizes the biological fate of Al from various sources.
5-3. Iatrogenic exposure to Al

The Al present in medications has a crucial effect on human health because of its high bioavailability. A considerable amount 
of contamination is present in total parenteral nutrition (TPN). Al in TPN solutions is completely absorbed and enters the 
blood. Although a part of Al in the blood is excreted from the kidneys, some patients receiving TPN solutions have renal failure. 
In particular, the renal functions of infants have not been fully developed, and infants are considered to be more susceptible to 
Al in TPN. The accumulation of Al in bones of patients receiving TPN has been reported. Bishop et al. reported that preterm 
infants who received TPN containing high concentrations of Al had lower mental development scores than age-matched 
infants who received TPN with low Al levels[167]. Based on these findings, The U.S. Food and Drug Administration (FDA), 
North American Society for Pediatric Gastroenterology and Nutrition, and other societies have recommended reduction of Al 
contamination in TPN solutions. The FDA published a final rule requiring the concentration of Al in TPN solutions to be 
labeled by 2000, and the rule has been in effect from 2003[168]. In Japan, the method for determination of Al in TPN solutions 
was added to the Japanese Pharmacopoeia in 2006. 

Another source of Al for infants is milk and formula[169]. High levels of Al are found in infant formulas. Yumoto et al. 
demonstrated that 26Al administered to mother rats was transported to the brain of suckling infants through maternal milk 
suggesting that it would happen in humans [170]. In fact, Ma et al. reported that higher concentrations of Al in nails of infants 
were associated with low fine motor score[171].

A large amount of Al is present in antacids, and therefore, continuous exposure of patients with renal failure or kidney diseases 
to Al-containing antacids may increase their risk of encephalopathy. In 2002, the Japanese Ministry of Health, Labour and Welfare 
recommended that patients on dialysis or with renal failure should not use Al-containing antacids. 

Al compounds, such as Al(OH)3 or Al phosphate, are widely used as adjuvants in various vaccines. Using the 26Al technique, 
Al in vaccines was shown to be absorbed and appeared in serum and other tissues of rats after intramuscular injection[172]. 
Weisser investigated the increase in serum Al levels and accumulation of Al in the bones of rats after intramuscular injection of 
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Fig. 4.	 Intake and bioavailability of aluminum (Al)
	 The daily intake of Al is estimated to be 10–20 mg from intrinsic foods and contamination by food additives or utensils. 

In general, the gastrointestinal absorption rate is less than 1%. However, this rate varies in individuals and is largely 
influenced by age, pH, stomach contents, chemical speciation of Al, and coexistence of substances such as silicic acid. 
Once Al enters the blood flow, a small but considerable amount of Al passes through the blood brain barrier, enters the 
brain, and accumulates throughout the lifetime. The absorption rates were obtained from Ref. No. 163.
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vaccines with Al adjuvants[173]. An association between Al-containing vaccines and Gulf War Syndrome and other diseases 
has been suspected[174]. Gulf War Syndrome is a multi-system disorder afflicting many veterans of the 1990–1991 Gulf War. 

Petrik et al. demonstrated that subcutaneous injection of Al(OH)3 caused apoptotic death of motor neurons and impaired 
motor functions of mice in addition to producing Al deposition in motor neurons[175]. Furthermore, the link between Al 
adjuvants and autism spectrum disorders (ASD) has been discussed for many years[176]. High Al concentrations are observed 
in the brains of ASD patients[132]. Considering that infants receive much more Al from vaccines than other sources, the risk 
of Al-containing vaccines should be revisited. 

6. Conclusion
Al is widely accepted as a neurotoxin and can cause cognitive deficiency and dementia when it enters the brain. Growing 

analytical, toxicological, and epidemiological studies support a link between Al and AD. Moreover, Al can affect infants, older 
adults, and patients with impaired renal functions and can cause severe health problems in these populations. Because Al is not 
excreted from the brain and accumulates for the long-term, unnecessary exposure to Al should be avoided. The link between 
Al and neurodegenerative diseases may provide a seed for the treatments/prevention of the diseases. The characteristics of Al 
neurotoxicity are complex, and further detailed research is necessary, particularly in relation to its bioavailability, cellular effects, 
metabolism, and metal-metal interactions. 
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