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Review

Abstract
Biopersistent nanofi bers with specifi ed physical dimension are unexpected human carcinogens whether they are 
natural or synthetic.  Asbestos, a natural fi brous mineral, is classifi ed as a defi nite human carcinogen (IARC Group 
1) to cause malignant mesothelioma (MM) and lung cancer.  Multi-walled carbon nanotube of 50 nm-diameter 
was defi ned in 2014 as a possible carcinogen (IARC Group 2B) toward MM, fortunately with no authorized 
patients thus far.  Carcinogenic mechanism of asbestos has been a mystery for a long time.  It is now recognized 
that asbestos goes through lung parenchyma by collecting hemoglobin-derived iron to reach pleural cavity, which 
takes several decades.  Iron-loaded asbestos can induce oxidative damage directly to mesothelial cells, carcinogenesis-
target cells lining somatic cavities.  Recently, it was clarifi ed that surrounding stromal environment are as important 
for mesothelial carcinogenesis.  The novel concept here is ceaseless ferroptosis of macrophages, which forms a 
Fe(II)-dependent stromal mutagenic milieu indirectly for mesothelial cells and indeed is a revised understanding of 
frustrated phagocytosis.  Deposition of foreign materials eventually causes iron accumulation in situ due to the innate 
characteristic of preserving iron inside cells.  Nanofi ber-induced carcinogenesis may be involved in other human 
carcinogenesis, including ovarian cancer.  Alternatively, iron excess can be an optimal target of cancer prevention and 
cancer treatment.
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Introduction
Cancer is one of the leading causes of human mortality all over the world (https://www.who.int/data/gho/data/themes/

mortality-and-global-health-estimates).  Whereas molecular carcinogenic mechanism of each human cancer is diversely different 
and unidentified in most of the cases [1], some of the environmental carcinogenesis reveals unequivocally significant epidemiological 
association, including ionizing radiation with leukemia [2] and asbestos exposure with malignant mesothelioma (MM) [3].  

Asbestos is a natural fibrous mineral, which has been used in the human history since 2,500 B.C. due to its resistance to heat, 
acid and friction, such as in pottery and sacred cremation garments for the Egyptian pharaohs [4].  After the industrial revolution 
period, wide use of asbestos started worldwide because of the economical merits of mining [5], which continued till epidemiologist 
recognized the association between asbestos exposure and MM or lung cancer [6].  MM has been and is a rare tumor [7] in that 
the tumor retains the characteristics of thin and flat mesothelial cells which line somatic cavities and decrease the friction-derived 
heat by producing hyaluronic acid [8].  We have ~2,000 new patients yearly in Japan (https://www.mhlw.go.jp/toukei/saikin/hw/
jinkou/tokusyu/chuuhisyu17/dl/chuuhisyu.pdf) in comparison to ~120,000 new lung cancer patients.  Historically, prolonged 
average human life was essential for the recognition of this tumor due to an extremely long incubation period of 30~40 years 
after asbestos exposure, which has been a long-time mystery [9].  After the recognition of all the asbestos as a definite human 
carcinogen (Group 1) by the International 
Agency for Research on Cancer (IARC) in 
1987 [5], scientists have lost interest in the 
mechanistic elucidation for a while.  Of note, 
asbestos is negative for Ames test [10].

In Japan, asbestos issue was reminded in 2005 
when Kubota shock occurred by newspaper 
report [11], when inhabitants near the asbestos 
factory obtained a high incidence of MM.  Even 
now the prognosis of MM is quite poor because 
of the difficulty in diagnosing the early stage of 
MM [12].  It is established that carcinogenicity 
of asbestos fibers depends on its high affinity for 
histones and hemoglobin-derived iron.  Indeed, 
asbestos (ferruginous) body found in the lung 
parenchyma of those people exposed to high 
amounts of asbestos supports this mechanism, 
thus generating physical scissors for cutting 
genomic DNA via the Fenton reaction [3, 9] 
(Figure 1).  Size (3 nm ~ 5 μm in diameter) 
[13] and length as an aspect ratio (fiber length/
diameter) of > 3 were important to reach 
alveolar space and this needle-like structure with 
biopersistence was essential to reach pleural and 
sometimes peritoneal cavities eventually.  

Iron metabolism revised
No life on the earth can live without iron from bacteria to humans [14, 15].  There are recent advancements in the understanding 

of iron metabolism in higher animals, which started from transferrin/ferritin system, iron transporters (DMT1, ferroportin, etc.) 
[16], posttranscriptional regulation (IRE-IRPs system) and IRP2/FBXL5-ubiquitin-proteasome system [17, 18].

The recent noteworthy new concepts in iron metabolism would be ferritinophagy [19, 20], cytosolic iron chaperones [21] and 
ferritin secretion via IRE-IRP/CD63-regualted extracellular vesicles [22].  All of these suggest that intracellular iron levels are 
strictly regulated not to abandon but efficiently reuse iron and to maintain the iron in a safe non-catalytic fashion.  Ferritinophagy 

Figure 1.	 Current understanding of the mechanism of asbestos-induced 
mesothelial carcinogenesis in humans.

	 Note that a few decades are required for asbestos fibers to go 
through lung parenchyma to the pleural cavity.  Asbestos fibers 
have hemolytic activity and high affinity for hemoglobin, thus 
accumulating massive amounts of iron on its surface (red fibers in 
the figure) to cause DNA double-strand breaks via Fenton reaction 
in parietal mesothelial cells, targets for carcinogenesis (direct 
effect).  Refer to text for details.
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is ferritin-specific autophagic process directed by nuclear receptor coactivator 4 (NCOA4) to release iron from ferritin cores into 
lysosomes [23].  Poly(rC)-binding protein 1 and 2 (PCBP1/2) has been first reported as intranuclear RNA-binding proteins 
but are now recognized as mutually exclusive cytosolic iron chaperones [24-26].  Only PCBP1 can load Fe(II) to ferritin cores 
whereas PCBP2 play a role in other intracellular Fe(II) deliveries [27, 28].  Theoretically, PCBP1/2 carries 3 molecule of Fe(II) 
in non-catalytic manner [21].  In general, PCBP1 works as tumor suppressor gene [29] and PCBP2 as oncogene [30].  The 
last one is quite new reported in 2021.  We discovered a canonical IRE in the 5’-untranslated region (UTR) of CD63 mRNA 
responsible for regulating its expression in response to increased iron.  We showed that under iron-loading, intracellular ferritin 
is transferred via NCOA4 to CD63(+) extracellular vesicles (EVs) that are then secreted.  Such iron-dependent secretion of the 
major iron storage protein ferritin is performed through CD63(+) EVs [22].

Ferroptosis
Ferroptosis is a recently defined regulated necrosis.  The characteristic in this cell death mode is the dependence on catalytic 

Fe(II) leading to lipid peroxidation [18, 31].  This was first reported on H-ras mutated fibrosarcoma cells with the use of erastin, 
an inhibitor for cystine/glutamate antiporter (SLC7A11), resulting in decrease in reduced GSH as an antioxidant [32].  The 
current revised concept of ferroptosis is the imbalance between Fe and S (-SH; sulfhydryls) in favor of iron, causing Fenton-reaction 
[18].  Iron is one of the most basic elements of the cell, working as cofactors in enzymes, such as ribonucleotide reductase (DNA 
synthesis), cytochrome oxidase (energy production) and catalase (antioxidant), and hemoglobin in higher species.  Thus, every 
cell tries to maintain the amounts of iron, and bacterial and fungal infections might be a fight to obtain iron for the continued 
growth of those invaders [15].  

It is worth mentioning here that there is no mechanisms to abandon iron from an individual in higher species except for 
bleeding though Fe(II) can be secreted extracellularly via ferroportin [25, 33].  Accordingly, accumulated iron or decreased 
antioxidant systems results in ferroptosis.  Cancer cells collects iron for persistent proliferation [34-36].  Thus, it is not hard to 
imagine that cancer cells specifically fall into ferroptosis when the overused antioxidant pathway is squeezed with certain chemicals 
[1].  Furthermore, autophagic process promotes ferroptosis via ferritin degradation [37] whereas ferritinophagy inhibition via 
NCOA4 deficiency in the heart mitigates the development of pressure overload-induced dilated cardiomyopathy [38].

Novel mechanism in asbestos-induced mesothelial carcinogenesis
Mesothelial cells are the major target cells in asbestos-induced carcinogenesis.  Thus, the research has been performed to 

clarify how asbestos causes genotoxicity on mesothelial cells directly.  However, we recently recognized that the surrounding 
microenvironment is as important for mesothelial carcinogenesis, based on animal model experiments [39].  In this peritoneal 
injection model in rats, we noticed after 1 month of injection that virtually all the asbestos fibers are inside the macrophages, 
which formed granuloma, a foreign body reaction.

Granuloma formation is a specific inflammation mainly of macrophages to confine uncontrollable materials/agents within 
those barriers, whether they are independent species or man-made synthetic materials (Figure 2).  Macrophages are phagocytic 
and antigen-presenting cells.  Furthermore, they play a central role in iron metabolism, especially regarding iron recovery from 
dead or dying cells.  We found that asbestos due to its specified physical dimension kills macrophages consistently at first via 
lysosomal-dependent cell death and finally ferroptosis, which generates Fe(II)-dependent mutagenic stromal milieu, causing 
β-catenin induction in mesothelial cells [39].  This is an indirect effect to mesothelial cells and may be a revised understanding 
of frustrated phagocytosis [40].

Carbon nanotubes
Carbon nanotube was discovered with electron microscopic observation in 1991 [41].  This is a synthetic material, consisting 

exclusively of carbon and with a tubular structure of a few nanometer (single-walled) to several hundred nanometers (multi-
walled) in diameter.  This material has been and is used for numerous industrial purposes, such as in lithium battery and liquid 
crystal film, based on its physical nature of rigidity, electrophilicity and heat conductivity [42, 43].  

However, its similarity to asbestos fibers in physical dimension was questioned in the early 2,000’s, and thus we worked on this 
issue.  We found that diameter of carbon nanotube is the most critical risk factor, where multi-walled carbon nanotube (MWCNT) 
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of ~50 nm-diameter was most carcinogenic to mesothelial cells in rat intraperitoneal injection studies [44] and that MWCNT 
of ~15 nm-diameter was not carcinogenic to mesothelial cells even after > 3 years of observation [45].  The interesting point was 
that carbon nanotubes have a high affinity not only for histone and hemoglobin but also for transferrin, an iron transporting 
protein in the serum, and that only MWCNT of -50 nm could go into mesothelial cells [46].  There observations suggest that 
excess iron play a role in MWCNT-associated mesothelial carcinogenesis.  This is strongly confirmed with the similar genetic 
alterations observed in the rat and human MMs between asbestos origin [47-49] and MWCNT of 50 nm-diameter origin [44], 
where homozygous deletion of p16Ink4a tumor suppressor gene was the most prominent .  Indeed, we believe that deletion of 
p16Ink4a tumor suppressor gene is a marker of Fenton reaction-induced carcinogenesis [35, 50], based on the studies of ferric 
nitrilotriacetate (Fe-NTA)-induced renal carcinogenesis model (Table 1).  Regarding Fe-NTA-induced renal carcinogenesis, 

Figure 2.	 Stromal mutagenic milieu generated by ceaseless 
macrophage ferroptosis.

	 Mesothelial cells have phagocytic activity and 
asbestos fibers in the somatic cavity are eventually 
transferred to stromal tissue supporting the somatic 
walls, where macrophages take up the fibers coated 
with hemoglobin-derived iron.  Macrophages try 
to accommodate all the asbestos fibers by making 
granuloma, a collection of macrophages with 
multinucleated giant cells.  However, many of the 
macrophages die through ferroptosis because they 
cannot cope with the disposal of these thin and 
long fibers.  Finally, abundant iron is released to 
the stroma of somatic wall, which constitutes the 
mutagenic milieu for the surface-lining mesothelial 
cells (indirect effect).

Table 1.	 Similarities and differences among three wild-type animal models causing cancer through excess iron.
	 Fe-NTA, ferric nitrilotriacetate; ip, intraperitoneal; MWCNT, multi-walled carbon nanotube.  Refer to text for details.

Models Fe-NTA Asbestos (chrysotile, 
crocidolite and amosite)

MWCNT of 50-nm diameter

Species Rat, mouse Rat, mouse Rat, mouse
Injection ip, 3~5 times a week/10-12 weeks ip, 1~3 times ip, 1~3 times
Major pathology Repeated Fenton reaction in the 

renal proximal tubules
Direct action to mesothelial cells 
with prolonged foreign body 
reaction (ceaseless ferroptosis of 
macrophages)

Direct action to mesothelial cells 
with prolonged foreign body 
reaction

Origin of excess iron Fe-NTA itself Asbestos itself (crodidolite, 
amosite), hemolysis (chrysotile) 
and affinity to hemoglobin

Affinity to hemoglobin and 
transferrin

Induced cancer Renal cell carcinoma; 50% of 
pulmonary metastasis in rats

Malignant mesothelioma Malignant mesothelioma

Major target gene Homozygous deletion of 16ink4a 
tumor suppressor gene

Homozygous deletion of 16ink4a 
tumor suppressor gene

Homozygous deletion of 16ink4a 
tumor suppressor gene

References [15, 50, 71, 72] [49, 73] [44, 46]
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refer to other published reviews [15, 51].
Recently, Tim4 was identified as a receptor for MWCNT 

in macrophages leading to granuloma formation [52, 53].  
It was recently reported that Tim4+ macrophages sequester 
and impair proliferation of CD8+ T cells [54] whereas TIM4 
expression by dendritic cells mediates uptake of tumor-
associated antigens and anti-tumor responses [55].  Whether 
persistent ferroptosis of macrophages is at work for mesothelial 
carcinogenesis requires further investigation.  We have to stress 
here that no definite MM case has been reported thus far in 
terms of carbon nanotubes.  We believe that this depends on 
early recognition (IARC Group 2B) [56] and the efforts on the 
industry side to avoid the use of high-risk carbon nanotubes 
and to develop the large-scale automated systems to minimize 
human exposure.  The continued use of MWCNT in industry 
and in material science, even for the robotic systems [57], is very 
different from the asbestos case and we can declare that this is 
one of the successful examples of experimental pathology using 
animal models and regulatory science.

Ovarian carcinogenesis
Another example we suspect for nanof iber-induced 

carcinogenesis accompanied by excess iron is ovarian 
carcinogenesis.  Endometriosis is a female disease of reproductive 
age where endometrium exists outside of uterine cavity, leading to iron excess due to monthly bleeding.  In the case of ovarian 
endometriosis, this iron excess is established as a risk for adenocarcinoma, especially clear cell carcinoma and endometrioid 
adenocarcinoma, in addition to menstrual pain and infertility [58, 59].  In addition to this, fibrous materials, including asbestos, 
are suspected to be carcinogenic to ovarian epithelial cells.  There are two points that are true but not well recognized: 1) there 
is a pathway in women through vagina, endometrium, oviduct to ovary [60-62], which happens at fertilization; 2) frequent 
use of baby power, including talc and some amounts of asbestos, may be epidemiologically associated with ovarian cancer [63, 
64] though it is still controversial [65, 66] (Figure 3).  We believe that this is an important question to be explored to prevent 
ovarian carcinogenesis.

Conclusion
Biopersistent fibrous materials may provide humans with unexpected risk of cancer, depending on its physical parameters 

and exposure route.  This is closely associated with the general response of our cells against foreign materials to collect/recover 
iron as much as possible and to deplete iron in the extracellular space.  Alternatively, if the macrophages cannot accommodate or 
scavenge these fibrous materials and die through ferroptosis, mutagenic stromal milieu is generated [39].  Finally, it is important 
to recognize that iron excess can be a target for cancer prevention [67, 68] and also for cancer therapy [18, 69, 70], including 
non-thermal plasma.
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Figure 3.	 Possible pathway of asbestos fibers reaching 
ovaries in humans.

	 Asbestos and other nanofibers may exist in the 
vulva of reproductive-age women as contaminants 
of family laundry or cosmetic applications.  Liquid 
flow from vulva, vagina, uterine cavity, oviduct to 
ovary may carry these fibers to ovarian epithelial 
cells.  Refer to text for details.
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